

GAMEland Project: Preparing Students for the European Labour Market through Gamified Language Learning

Index

1. Introduction	4
1.2 The GAMEland Application: What It Is and How It Work	s 4
1.3 Pedagogical Foundations	5
2. Description of the GAMEland Application	6
2.1 Introduction	6
2.2 Alice in Gameland: Escape Room	7
3. Research Design & Methodology 9	
3.1 Objectives of the Pilot Testing	9
2.2 Research Design and Participant Demographics	10
2.3 Experimental Setting and Tools	12
4. Pilot Phases and Results	13
4.1 Pre-/Post-Test Performance	13
4.2 Usability (SUS Results) 13	
2.4 Quantitative Results	14
4.5 Qualitative Feedback and Observations	15
4.6 Iterative Improvements and Insights	15
4.7 Broader Impacts and Strategic Value	15
5. Discussion	16
6. Policy Recommendations	16
6.1 Expanded Policy Guidelines and Stakeholder Recommer	ndations 16
6.2 Strategic Integration in Higher Education Institutions (H	HEIs) 17
6.3 Recommendations for Vocational Education and Training	- ` '
Institutions	17
6.4 Guidelines for Policymakers and Institutional Leaders	18
6.5 Guidance for EdTech Developers and Startups	19
6.6 Future KA2 project	23
7. Conclusions & Future Directions	24
8. References	24

9. Annexes (planned) 24

Annexes	25
Annex A: Pre-/Post-test Performance	25
Annex B: System Usability Scale (SUS)	25
Annex C: Game Experience Questionnaire (GEQ)	26
Annex D: Sample Scenario Evaluation Questionnaire	27
Annex E: Promotional material for dissimenation purposes	28
GAMELand Radio programmes	29

1. Introduction

The GAMEland Project (Gamification Assets for Multisensorial Educative tools in Language learning using co-creation for addressing Needs and Desires of students), funded under the Erasmus+ KA2 programme, responds to the growing demand for language competences aligned with the needs of the European labour market.

The project addresses:

- Employability by developing language for specific purposes (LSP) competences relevant to real workplace contexts.
- Innovation in education by using gamification, mobile learning, and multisensory inclusivity.
- Accessibility by ensuring the tool is free, multilingual, and usable across diverse educational and socio-economic backgrounds.

The flagship output, Alice in Gameland, is an educational escape room application designed to merge game-based learning, immersive storytelling, and workplace scenario simulation into one engaging tool for language learning.

Led by the University of Naples Federico II and involving partners from Poland, France, Turkey, and Ukraine, the project brings together a multidisciplinary consortium of universities, research labs, and edtech companies. The central aim is to improve the linguistic and soft skills of university students—particularly in Languages for Specific Purposes (LSP)—through a gamified, multisensory, and inclusive learning environment.

1.2 The GAMEland Application: What It Is and How It Works

At the heart of the project lies the GAMEland Application, an educational serious game delivered via Android smartphones and designed around the concept of an interactive escape room. The tool allows students to navigate realistic, professional scenarios requiring the use of LSP skills.

Key Features:

- Ten-stage narrative structure modeled after Alice in Wonderland, each chapter embedding thematic vocabulary and grammar challenges.
- Multimodal interactions through a mobile app that integrates NFC (Near Field Communication)-tagged physical objects—allowing learners to scan real-world items to progress in the game.
- Real-time feedback to reinforce learning outcomes, delivered through an accessible audio-visual interface.
- Flow-oriented design, where difficulty levels are matched with the learner's proficiency to promote motivation and engagement.
- Standalone and teacher-supported modes, enabling both self-learning and classroom integration.

1.3 Pedagogical Foundations

The GAMEland application is grounded in a blend of innovative pedagogical paradigms:

a) Experiential Learning

Learners interact with immersive problem-solving scenarios, mirroring real-life challenges. By using gameplay as a form of situated learning, the app internalizes language structures in context.

b) Gamification and Flow Theory

Inspired by Csikszentmihalyi's "Flow" theory, the application maintains an optimal balance between difficulty and skill level, maximizing learner concentration and satisfaction.

c) Multisensory Learning

The combination of digital storytelling, AR/NFC-enabled objects, and audio prompts activates multiple sensory channels, enhancing memory retention and motivation.

d) Inclusive Design

The app incorporates accessible content through multimodal formats (text, speech, image), supporting learners with diverse linguistic and cognitive profiles.

e) Tangible User Interfaces (TUIs)

By embedding NFC chips into real-world objects, GAMEland enhances embodiment in learning, helping students physically interact with knowledge (e.g., scanning a tagged "passport" in a travel-themed scenario).

2. Description of the GAMEland Application

2.1 Introduction

The model integrates today's main requirements in terms of technology and design:

- Mobile Learning enabling "anytime, anywhere" learning.
- Game-Based Learning (GBL) embedding language objectives into structured gameplay.
- Multisensory and Inclusive Design ensuring accessibility for students with different learning preferences and needs.

This ensures that learning is not abstract but anchored to real-world communicative situations, promoting deeper internalisation of workplace vocabulary, pragmatics, and intercultural competence.

2.2 Alice in Gameland: Escape Room

The Alice in Gameland app draws inspiration from Lewis Carroll's Alice's Adventures in Wonderland. Students navigate ten narrative-driven stages, each presenting puzzles that simulate workplace challenges (e.g., project planning, negotiation, event management).

- Narrative Phase: Storyline delivered via AI-generated visuals and audio.
- Puzzle Phase: Language-based challenges, calibrated to learner levels.
- Feedback Phase: NFC-tagged physical objects act as interactive solutions, enabling immediate feedback.

This recursive cycle of Narrative \rightarrow Puzzle \rightarrow Feedback ensures continuous engagement and reinforcement.

2.3 Development Process

The tool emerged through an iterative co-creation model:

- Needs analysis with employers, HR staff, and lecturers.
- Co-design of scenarios with students and teachers for authenticity.
- Prototype testing in classrooms.
- Pilot trials in four countries (Italy, France, Poland, Turkey). We compensate for Ukraine's lack of involvement xxx aware and forgiving xxx
- Refinement of usability, narrative flow, and difficulty calibration.

This development process was implemented with the collaboration of all partners, both for the design phase and the implementation and testing phase.

The consortium followed a user-centered, research-backed methodology throughout, starting with a Needs Analysis (WP1 & WP2):

- Mapping soft skills and language needs across the five participating countries.
- Identifying gaps in current LSP textbooks.
- Focus groups involving students, teachers, and employers.

The research articles which were written throughout the project were posted on the GAMELand website: https://gamelandproject.eu/?page_id=1675

Co-creation (WP4):

GAMELand partners collaborated in designing game scenarios. Each partner was to produce 15 talking maps according to a set template which was constructed in collaboration with

Scenarios were fictionalized and embedded with realistic professional challenges.

Technical Implementation (WP3):

- A hybrid application integrating digital gameplay and physical escape rooms using NFC technology.
- Modules for adaptive feedback and scenario personalization.

• The app can be downloaded from the Google Play Store, and functions both in standard digital mode and in escape room settings.

Deliverables:

Talking maps:

The following maps were produced:

The following escape room was produced

ESCAPE ROOM - "ALICE IN GAMELAND"

Development of a hybrid (physical * digital) escape room for teaching Languages for Specific Purposes (LSP).

Designed as an immersive narrative game inspired by Alice in Wonderland, it encourages language learning through collaborative puzzie-solving and role-play.

The timeline was rigorously followed, as meeting our testing objectives required the Talking Maps and Alice in GAMELand projects to be ready on schedule. Testing opportunities largely depended on conferences and invitations to present, which consortium members were eager to seize. These opportunities are detailed in the dissemination section.

3. Research Design & Methodology

3.1 Objectives of the Pilot Testing

The primary objective of the pilot phase of the GAMEland project was to evaluate the usability, pedagogical impact, and user experience of the "Alice in GAMEland" escape room application. Specifically, the research focused on:

- Assessing student engagement and learning outcomes through immersive gameplay.
- Measuring usability and satisfaction via standardized instruments.
- Gathering qualitative feedback to refine the application and prepare for wider deployment.

• Validating the pedagogical model: experiential, gamified, and situated learning for LSP (Languages for Specific Purposes).

2.2 Research Design and Participant Demographics

Objective: 250 tests

Pilot testing was conducted across four European universities:

Université Rennes 2 (France) + Université Côte d'Azur Nice Università degli Studi di Napoli Federico II (Italy) Uniwersytet im. Adama Mickiewicza w Poznaniu (Poland) Burdur Mehmet Akif Ersoy University (Turkey)

Sample size: 148 participants xxx update

Italy: 47

Poland: 50

Turkey: 36

France: 15 (Rennes) + over 250 in « quick testing mode » in Université

Côte d'Azur (Nice), during the "Digital Week"

Change of testing strategy:

Stumbling blocks

- 4 countries instead of 5 were in a position to contribute
- Group participation dynamic (of 5 people, for people) with one phone only: 5 testers and one reporting back on the experience
- Incomplete questionnaires (for whatever reason time constraints of other)

New suggestions that the consortium came up with:

- Quick testing mode mainly with an audience of 250 people in Nice,
 France
- Observation of group dynamics
- Monitoring of the connections to the platform

By implementing the new suggestions, we successfully reached our target. The incomplete tests were thus also considered.

A detailed observation of group participation dynamics was conducted and reported in the following article:

https://lidile.recherche.univ-rennes2.fr/en/event/gameland-and-air-nice-digital-week-cote-dazur-university

For the *Alice in GAMELand* escape game, we observed that participants preferred working in groups of 4–5. Typically, they gathered around a single phone and discussed each step collectively, aiming to give unanimous answers in the final questionnaire, just as they had during the game. As a result, the survey dynamic mirrored the game dynamic, which reduced the apparent number of respondents—since behind most responses there were actually five participants.

Average age: 23.47

Gender distribution: 96 women, 46 men, 3 non-binary, 3 unspecified

Language diversity:

• Over 10 native languages represented (Italian, Turkish, Polish, French, plus a diverse mix of Russian, Ukrainian, Arabic, Chinese, etc.)

- English proficiency: from Beginner to Advanced, with some native speakers.
- Gender balance: majority female, with inclusion of male and non-binary participants.

Each participant engaged in the escape room game in small groups (max 7 people), promoting collaboration and reducing anxiety during gameplay.

2.3 Experimental Setting and Tools

Setup:

- Classrooms were transformed into interactive spaces using NFC-tagged objects (e.g., posters, lunchboxes, teapots).
- Devices (Android smartphones) preloaded with the game were distributed to teams.
- Instructions and QR codes for post-test surveys were displayed via shared slides

Gameplay Flow:

- Players scanned the first NFC object to launch the storyline.
- The system narrated a plotline, posed challenges, and validated answers via real-world object interactions.
- The full journey included 10 puzzles and lasted 30–45 minutes.

Data Collection Instruments:

System Usability Scale (SUS): to measure interface usability.

Game Experience Questionnaire (GEQ): to assess emotional and cognitive engagement across 7 dimensions (e.g., immersion, flow, affect, challenge).

Open-ended feedback, photos, and observer notes were also collected.

The evaluation of the GAMEland tool adopted a mixed-methods approach:

- Quantitative Measures
- System Usability Scale (SUS) to assess usability.
- Game Experience Questionnaire (GEQ) to measure immersion, flow, competence, affect.
- Pre-/Post-tests to track knowledge gains.
- Qualitative Measures
- Scenario Evaluation Questionnaires with open comments.
- Focus groups and interviews with students and teachers.
- Employer feedback on workplace realism.

4. Pilot Phases and Results

4.1 Pre-/Post-Test Performance

- The tests showed clear learning gains, especially for vocabulary and applied workplace communication.
- Beginners improved markedly in recognition tasks
- Intermediate learners achieved the most significant progress, moving towards workplace readiness.
- Advanced learners benefited less, due to a ceiling effect.
- This confirms the application's effectiveness in bridging learners from basic to professional competence.

4.2 Usability (SUS Results)

- Average score: 68.5 (acceptable usability).
- Some learners rated usability highly (>80), others struggled (<50).
- Differences were linked to language level and digital literacy.
- National trends: Italy and Poland more positive; France and Turkey noted more issues (interface clarity, NFC reliability).

4.3 Game Experience (GEQ Results)

- Competence ($\approx 2.7/4$): Learners felt capable and confident.
- Flow & Immersion (≈2.4/4): Moderate engagement, but not deeply

immersive.

- Challenge (≈2.0/4): Adequate difficulty, though not strongly stimulating.
- Positive Affect ($\approx 1.4/4$): Surprisingly low enjoyment was present but not intense.
- Negative Affect (\approx 1.4/4): Low frustration indicating a stable, if emotionally neutral, experience.

4.4 Scenario Evaluation

- Narrative immersion was highly appreciated.
- Hands-on NFC interaction added novelty and multisensory depth.
- Teachers valued it as a complementary reinforcement tool.
- Employers validated the workplace realism of scenarios.
- Criticism: Limited emotional stimulation and puzzle variety; uneven difficulty calibration.

4.5 Cross-Country Comparison

- Italy: Strong engagement with narrative and creativity.
- France: Usability issues cited.
- Poland: Collaboration valued, but puzzle balance questioned.
- Turkey: Intercultural and group aspects praised, though technical barriers noted.

2.4 Quantitative Results

a. System Usability Scale (SUS)

Metric Observed Score Reference Value Interpretation

Mean SUS Score 68.5 68.0 Acceptable (Grade B)

Standard Deviation (SD) 17.66 12.5 High variability

- → While the average usability was consistent with international standards, the relatively high SD indicates varied user experiences, likely due to differing tech familiarity and language levels.
- b. Game Experience Questionnaire (GEQ)

Dimension Mean Score Interpretation

Competence 2.66 Moderately to fairly high

Flow 2.44 Moderate engagement

Immersion (Sensory/Imaginative) 2.41 Moderate

Challenge 1.98 Low-moderate

Tension / Annoyance 1.45 Low

Negative Affect 1.43 Low

Positive Affect 1.40 Low

→ Learners felt competent and moderately immersed. However, emotional response scores were low, indicating a neutral affective experience and suggesting potential areas for narrative or challenge enhancement.

4.5 Qualitative Feedback and Observations

- Many participants described the experience as "fun," "original," and "refreshing."
- Some noted technical friction with scanning or identifying tagged objects.
- Others suggested enhancing emotional impact with music, branching narratives, or more visually engaging content.
- Feedback emphasized the value of teamwork, linguistic exposure, and low-stress learning environments.

The qualitative feedback from teachers (based on video recordings) was most valuable and it was taken into account to draft out the last part of this report.

4.6 Iterative Improvements and Insights

Based on SUS/GEQ scores and participant interviews:

- The app interface was streamlined.
- Tags were made more consistent and visible using standardized stickers
- A tagging and setup guide was released to support educators and reduce classroom friction.
- Plans were made to adjust difficulty dynamically based on users' skill level, allowing for broader accessibility.

4.7 Broader Impacts and Strategic Value

The pilot validated the game's core value as a pedagogical, inclusive, and scalable tool. It supported:

LSP development (e.g., vocabulary tied to professional contexts).

Social skills via collaboration.

Technological skills via app use and QR/NFC interactions.

The approach proved transferable across contexts—from language centres to career training and VET—positioning GAMEland as a tool for lifelong and workplace learning

5. Discussion

The pilots confirm that GAMEland is effective at combining gamification and language learning.

Strengths:

- Improves LSP competences relevant to the labour market.
 Promotes collaboration and intercultural awareness.
- Works as a mobile-first, low-cost tool.

Weaknesses:

- Moderate, not strong, emotional engagement. - Variability in usability across learners. - Challenge calibration requires refinement.
- Scientific Contribution:

This is among the first large-scale trials of AR-enhanced escape rooms for language learning in HEI/VET, offering evidence that gamification enhances both motivation and employability competences.

See research article posted on the website xxx

6. Policy Recommendations

6.1 Expanded Policy Guidelines and Stakeholder Recommendations

The GAMEland project aims not only to innovate language education through gamified and immersive tools, but also to provide policy frameworks and practical guidelines for widespread and sustainable integration in education systems. These recommendations support:

Teachers and course designers

University and VET administrators

Digital learning solution providers

Policymakers at national and EU levels

They are grounded in the pilot data, user feedback, and best practices from the consortium's cross-national collaboration.

6.2 Strategic Integration in Higher Education Institutions (HEIs)

a. Curricular Integration

Embed GAMEland into Language for Specific Purposes (LSP) modules across disciplines (e.g. medicine, law, hospitality, engineering).

Use the escape game as a formative assessment tool to evaluate applied vocabulary and soft skills.

Align puzzles and scenarios with CEFR descriptors and national qualification frameworks.

Xxx from A2 to C1 xxx

b. Teacher Training

Offer workshops for language instructors on gamified learning and immersive technology.

Include the GAMEland tagging guide, scenario editor, and facilitator instructions as part of internal training resources.

c. Interdisciplinary Collaboration

Encourage teams of linguists, instructional designers, and software engineers to co-develop new scenarios.

List of talking maps: xxx Interdisciplinary aspect

Leverage existing resources and student talent for co-creation: students can design their own escape room narratives.

d. Hybrid and Blended Use

Integrate the game within blended learning environments (e.g. BIP – Blended Intensive Programmes).

Use GAMEland during international or language weeks to foster multilingual collaboration.

6.3 Recommendations for Vocational Education and Training (VET) Institutions

a. Job-Specific Scenarios

Customize GAMEland content to simulate real-life professional situations, such as:

Construction site safety briefings

Customer service dialogues in tourism

Medical intake interviews

Use NFC-enhanced posters and props to create situated language challenges relevant to trainees' future roles

b. Inclusivity and Access

Ensure VET learners with low digital literacy are supported with tutorials and team play formats.

Prioritize multilingual accessibility of interfaces and feedback.

c. Certification and Recognition

Develop micro-credentials or digital badges aligned with game completion and learning outcomes.

Integrate gameplay metrics into portfolio-based assessment systems for learners.

d. Industry Involvement

Co-develop scenarios with input from employers and sectoral representatives to ensure relevance.

Use the game to conduct language screening and upskilling for interns and apprentices.

6.4 Guidelines for Policymakers and Institutional Leaders

a. Policy-Level Support for Gamified LSP Learning

Recognize game-based learning as a valid pedagogical approach in official curricula.

Allocate funding for the adoption of digital escape rooms and AI-based language tools at institutional level.

b. Support for Digital Infrastructure

Invest in mobile devices, NFC technology, and classroom Wi-Fi to enable seamless implementation.

Ensure universal access to GAMEland through open licensing and inclusion in national educational repositories. Xxx website

c. Data Protection and Ethics

Adhere to GDPR and national privacy regulations when collecting gameplay and evaluation data.

Educators should be trained in ethical use of AI-enhanced learning systems.

d. Cross-Sector Collaboration

Promote collaboration between ministries of education, labour, and digital affairs.

Establish joint task forces or working groups to scale up projects like GAMEland across Europe.

e. Best Practices for Implementation

Phase Action

Preparation Translate, adapt, and tag props; train facilitators

Launch Begin with a narrative introduction; explain mechanics

Facilitation Monitor team dynamics; support weaker players with hints

Feedback Use post-test surveys (SUS, GEQ); host a reflection session

Evaluation Analyze usability and emotional engagement to inform improvements

Resources such as the GAMELAND TAGGING GUIDE, downloadable game materials, and demo videos should be made readily available on institutional learning platforms and project websites.

6.5 Guidance for EdTech Developers and Startups

a. Design Principles

Prioritize usability and accessibility: avoid overly complex interfaces.

Use AI to offer adaptive difficulty, multilingual feedback, and learning analytics dashboards.

b. Scalability and Licensing

Distribute GAMEland as open source or freemium to encourage institutional uptake.

Provide white-label options for organizations seeking to tailor the platform.

c. Community Engagement

Encourage educator and student contributions (e.g., open scenario libraries).

Host challenges or competitions to create new puzzles or storylines.

d. Ongoing Research

Collect longitudinal data to measure vocabulary retention and skill transfer.

Collaborate with universities on PhD and MA research projects using GAMEland as a case study.

6.7 Sustainability and Dissemination

a. Sustainability Plans

Maintain the app and scenario bank post-project via university networks.

Encourage multilingual scenario creation beyond the project's five core languages.

b. Dissemination Channels

Present GAMEland at:

- Language teaching conferences (e.g., EuroCALL, CALICO)
- Technology and education fairs
- EU Digital Education Action Plan events
- BIP (financed by Europe)

Publish findings in journals related to TEL (Technology-Enhanced Learning) and applied linguistics.

Toward a European Model of Inclusive Language Training

GAMEland represents a scalable model for inclusive, mobile-first, gamified language learning across borders and sectors. Its key advantages include:

Cost-free access to tools and materials

Hybrid physical-digital learning

Real-world LSP alignment

Motivational power of play and story

By fostering transversal skills, intercultural awareness, and linguistic confidence, GAMEland supports the EU's ambitions for a more mobile, skilled, and connected workforce.

6.6 Future KA2 project

Building on GAMELand, the GAMEWorkS project (proposed under Erasmus+ KA2) aims to expand the reach and utility of educational games into workplace settings.

Authoring Tools for Workplace Integration

GAMEWorkS proposes to develop customizable authoring tools and templates for NFC-enabled Talking Maps and Escape Room games. These will empower companies to:

Adapt language-learning content to their specific work environments.

https://docs.google.com/document/d/1W7tjQ93 C Z0V6PNvXFM5ebzk5nMz SMEbqVi3voPtuQ/edit?tab=t.0

To summarize:

For Higher Education Institutions (HEIs)

- Integrate GAMEland into LSP and intercultural courses.
- Offer lecturer training in gamification and mobile pedagogy.
- Recognise in-game progress as part of course assessment.

For VET Providers

- Use GAMEland as workplace simulation training.
- Ensure access for disadvantaged learners via open-access model.
- Collaborate with employers to update scenarios.

For Employers & HR

- Incorporate GAMEland into onboarding and upskilling.
- Recognise digital badges from gameplay as competence evidence.
- Maintain feedback loops with HEIs/VET providers.

For Policy-Makers

- Fund expansion of GAMEland to more languages and sectors.
- Include gamified tools in the European Skills Agenda.
- Promote open educational resources (OER) adoption across HEI and VET.

7. Conclusions & Future Directions

The GAMEland project demonstrates that serious games can bridge language learning with labour market needs.

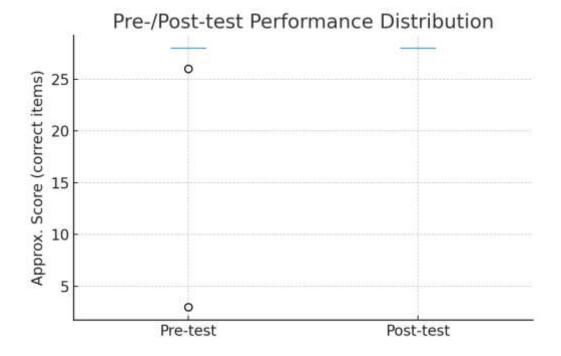
Future priorities:

- Enhance emotional engagement through richer storytelling and adaptive difficulty.
- Expand multilingual support for broader inclusivity.
- Scale dissemination across European networks.
- Develop sustainable policy frameworks to institutionalise game-based learning.

8. References

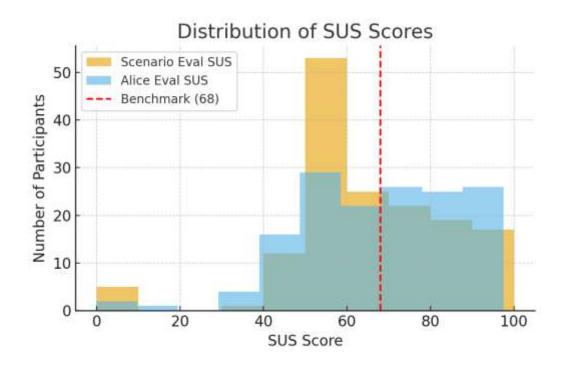
[References as provided in the original draft and expanded with project documentation + article refs.]

Website link

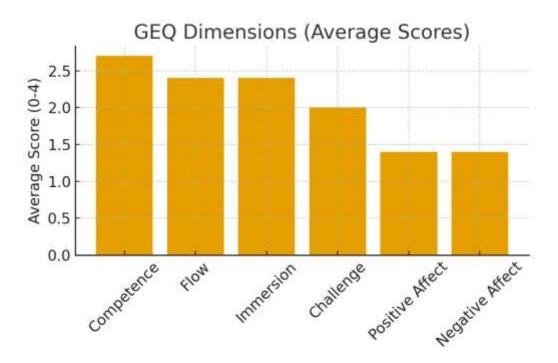

9. Annexes (planned)

- Annex A: Pre-/Post-test score distributions (boxplots, tables)
- Annex B: SUS score distributions and benchmarks.
- Annex C: GEQ results by dimension and country.
- Annex D: Sample scenario evaluation questionnaires.
- Annex E: GAMELand promotional Material
- Annex F: Events where GAMELand was promoted
- Annex G: GAMELand Radio programmes

Annexes


Annex A: Pre-/Post-test Performance

The following boxplot illustrates the distribution of learner scores before and after using the GAMEland application. The upward shift demonstrates overall improvement in performance.


Annex B: System Usability Scale (SUS)

The histogram below shows the distribution of SUS scores collected across the pilot studies. The red dashed line indicates the widely recognised benchmark of 68 for acceptable usability.

Annex C: Game Experience Questionnaire (GEQ)

The GEQ results are presented below as average scores across dimensions. Scores range from 0 ('Not at all') to 4 ('Extremely'). These results show moderate levels of competence, flow, and immersion, with low affective responses.

Annex D: Sample Scenario Evaluation Questionnaire

GET READY

Start by creating your teams

DOWNLOAD THE "GAMELAND" APP

It'll allow you to test the talking maps. Only available on Android

DOWNLOAD THE "ALICE IN GAMELAND" APP

At least one person per team. Only available on Android

QUESTIONNAIRES

We hope you've enjoyed playing! You may now scan the QR codes to give us your feedback on the experience

QUESTIONNAIRE ON THE "GAMELAND" APP

QUESTIONNAIRE ON THE "ALICE IN GAMELAND" APP

Annex E: Promotional material for dissimenation purposes

THE GAMELAND PROJECT

Context and objectives

Gamification Assets for Multisensorial Educative tools in Language learning using cocreation for addressing Needs and Desires of students

European project - 5 Universities - 1 Start-up :

- Napoli Frederico II University (Italy)
- Rennes 2 University (France)
- Lviv Polytechnical National University (Ukraine)
- Burdur Mehmet Akif Ersoy University (Türkiye)
- Adam Mickiewicz University (Poland)
- Smarted SRL

Goals:

- Create an inclusive, multisensory approach to teaching foreign languages,
- Design an Al-Enhanced Serious Game,
- Involve Educators and Students in Co-Creation,
- Produce Guidelines for Academia-Industry Collaboration.
- Enhance Digital Readiness and Innovative Teaching Practices
- Bridge Skills Gaps for Labor Market Integration.

THE PROJECT

Here are the two PRs of the GAMEland project using NFC (near field communication) technology

THE "TALKING MAPS" AND GAMELAND APP

A multilingual mobile application integrating Al modules to support autonomous language learning.

The app includes interactive scenarios animated dislogues and gamified tasks, focusing on specialized vocaturary aligned with job market needs.

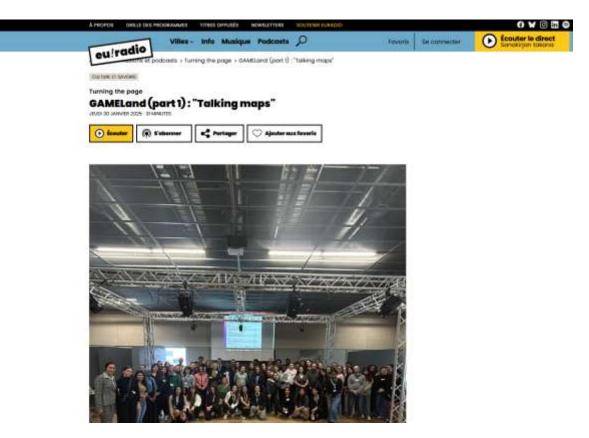
ESCAPE ROOM - "ALICE IN GAMELAND"

Development of a hybrid lphysical - digital) escape room for teaching Languages for Specific Purposes (LSP)

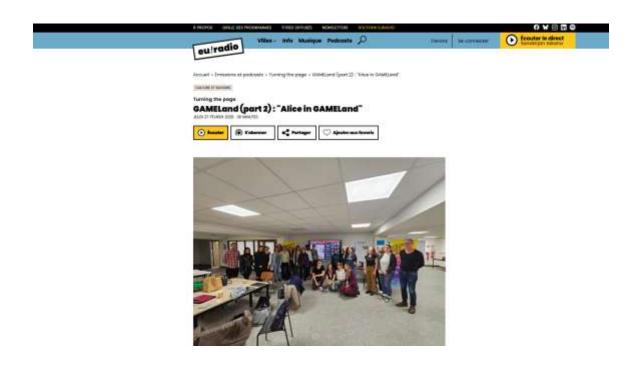
Duugnod as an immersive narrative game inspired by Alice in Wonderland, it encourages language tearning through collaborative puzzle-solving and role-play

GAMELand Radio programmes

https://euradio.fr/emission/9Rv9-turning-the-page/WdGE-gameland-part-1-talking-maps


Events where GAMELand was promoted

https://lidile.recherche.univ-rennes2.fr/en/event/gameland-and-air-nice-digital-week-cote-dazur-university



https://univ-cotedazur.fr/international/ulysseus/international-digital-week-2025-plus-de-250-participants-de-35-pays-reunis-a-universite-cote-dazur

https://euradio.fr/emission/9Rv9-turning-the-page/nZ70-gameland-part-2-alice-in-gameland

